Getting Started
Requirements
You need a LangGraph Cloud API server. You can start a server locally via LangGraph Studio or use LangSmith for a hosted version.
The state of the graph you are using must have a messages key with a list of LangChain-alike messages.
New project from template
Create a new project based on the LangGraph assistant-ui template
npx create-assistant-ui@latest -t langgraph my-appSet environment variables
Create a .env.local file in your project with the following variables:
# LANGCHAIN_API_KEY=your_api_key # for production
# LANGGRAPH_API_URL=your_api_url # for production
NEXT_PUBLIC_LANGGRAPH_API_URL=your_api_url # for development (no api key required)
NEXT_PUBLIC_LANGGRAPH_ASSISTANT_ID=your_graph_idInstallation in existing React project
Install dependencies
npm install @assistant-ui/react @assistant-ui/react-ui @assistant-ui/react-langgraph @langchain/langgraph-sdkSetup a proxy backend endpoint (optional, for production)
This example forwards every request to the LangGraph server directly from the browser. For production use-cases, you should limit the API calls to the subset of endpoints that you need and perform authorization checks.
import { NextRequest, NextResponse } from "next/server";
function getCorsHeaders() {
return {
"Access-Control-Allow-Origin": "*",
"Access-Control-Allow-Methods": "GET, POST, PUT, PATCH, DELETE, OPTIONS",
"Access-Control-Allow-Headers": "*",
};
}
async function handleRequest(req: NextRequest, method: string) {
try {
const path = req.nextUrl.pathname.replace(/^\/?api\//, "");
const url = new URL(req.url);
const searchParams = new URLSearchParams(url.search);
searchParams.delete("_path");
searchParams.delete("nxtP_path");
const queryString = searchParams.toString()
? `?${searchParams.toString()}`
: "";
const options: RequestInit = {
method,
headers: {
"x-api-key": process.env["LANGCHAIN_API_KEY"] || "",
},
};
if (["POST", "PUT", "PATCH"].includes(method)) {
options.body = await req.text();
}
const res = await fetch(
`${process.env["LANGGRAPH_API_URL"]}/${path}${queryString}`,
options,
);
return new NextResponse(res.body, {
status: res.status,
statusText: res.statusText,
headers: {
...res.headers,
...getCorsHeaders(),
},
});
} catch (e: any) {
return NextResponse.json({ error: e.message }, { status: e.status ?? 500 });
}
}
export const GET = (req: NextRequest) => handleRequest(req, "GET");
export const POST = (req: NextRequest) => handleRequest(req, "POST");
export const PUT = (req: NextRequest) => handleRequest(req, "PUT");
export const PATCH = (req: NextRequest) => handleRequest(req, "PATCH");
export const DELETE = (req: NextRequest) => handleRequest(req, "DELETE");
// Add a new OPTIONS handler
export const OPTIONS = () => {
return new NextResponse(null, {
status: 204,
headers: {
...getCorsHeaders(),
},
});
};Setup helper functions
import { Client } from "@langchain/langgraph-sdk";
import { LangChainMessage } from "@assistant-ui/react-langgraph";
const createClient = () => {
const apiUrl = process.env["NEXT_PUBLIC_LANGGRAPH_API_URL"] || "/api";
return new Client({
apiUrl,
});
};
export const createThread = async () => {
const client = createClient();
return client.threads.create();
};
export const getThreadState = async (
threadId: string,
): Promise<ThreadState<{ messages: LangChainMessage[] }>> => {
const client = createClient();
return client.threads.getState(threadId);
};
export const sendMessage = async (params: {
threadId: string;
messages: LangChainMessage;
}) => {
const client = createClient();
return client.runs.stream(
params.threadId,
process.env["NEXT_PUBLIC_LANGGRAPH_ASSISTANT_ID"]!,
{
input: {
messages: params.messages,
},
streamMode: "messages",
},
);
};Define a MyAssistant component
"use client";
import { Thread } from "@/components/assistant-ui";
import { AssistantRuntimeProvider } from "@assistant-ui/react";
import { useLangGraphRuntime } from "@assistant-ui/react-langgraph";
import { createThread, getThreadState, sendMessage } from "@/lib/chatApi";
export function MyAssistant() {
const runtime = useLangGraphRuntime({
stream: async (messages, { initialize }) => {
const { externalId } = await initialize();
if (!externalId) throw new Error("Thread not found");
return sendMessage({
threadId: externalId,
messages,
});
},
create: async () => {
const { thread_id } = await createThread();
return { externalId: thread_id };
},
load: async (externalId) => {
const state = await getThreadState(externalId);
return {
messages: state.values.messages,
interrupts: state.tasks[0]?.interrupts,
};
},
});
return (
<AssistantRuntimeProvider runtime={runtime}>
<Thread />
</AssistantRuntimeProvider>
);
}Use the MyAssistant component
import { MyAssistant } from "@/components/MyAssistant";
export default function Home() {
return (
<main className="h-dvh">
<MyAssistant />
</main>
);
}Setup environment variables
Create a .env.local file in your project with the following variables:
# LANGCHAIN_API_KEY=your_api_key # for production
# LANGGRAPH_API_URL=your_api_url # for production
NEXT_PUBLIC_LANGGRAPH_API_URL=your_api_url # for development (no api key required)
NEXT_PUBLIC_LANGGRAPH_ASSISTANT_ID=your_graph_idSetup UI components
Follow the UI Components guide to setup the UI components.
Advanced APIs
Message Accumulator
The LangGraphMessageAccumulator lets you append messages incoming from the server to replicate the messages state client side.
import {
LangGraphMessageAccumulator,
appendLangChainChunk,
} from "@assistant-ui/react-langgraph";
const accumulator = new LangGraphMessageAccumulator({
appendMessage: appendLangChainChunk,
});
// Add new chunks from the server
if (event.event === "messages/partial") accumulator.addMessages(event.data);Message Conversion
Use convertLangChainMessages to transform LangChain messages to assistant-ui format:
import { convertLangChainMessages } from "@assistant-ui/react-langgraph";
const threadMessage = convertLangChainMessages(langChainMessage);Thread Management
Basic Thread Support
The useLangGraphRuntime hook now includes built-in thread management capabilities:
const runtime = useLangGraphRuntime({
stream: async (messages, { initialize }) => {
// initialize() creates or loads a thread and returns its IDs
const { remoteId, externalId } = await initialize();
// Use externalId (your backend's thread ID) for API calls
return sendMessage({ threadId: externalId, messages });
},
create: async () => {
// Called when creating a new thread
const { thread_id } = await createThread();
return { externalId: thread_id };
},
load: async (externalId) => {
// Called when loading an existing thread
const state = await getThreadState(externalId);
return {
messages: state.values.messages,
interrupts: state.tasks[0]?.interrupts,
};
},
});Cloud Persistence
For persistent thread history across sessions, integrate with assistant-cloud:
const runtime = useLangGraphRuntime({
cloud: new AssistantCloud({
baseUrl: process.env.NEXT_PUBLIC_ASSISTANT_BASE_URL,
}),
// ... stream, create, load functions
});See the Cloud Persistence guide for detailed setup instructions.
Interrupt Persistence
LangGraph supports interrupting the execution flow to request user input or handle specific interactions. These interrupts can be persisted and restored when switching between threads:
- Make sure your thread state type includes the
interruptsfield - Return the interrupts from the
loadfunction along with the messages - The runtime will automatically restore the interrupt state when switching threads
This feature is particularly useful for applications that require user approval flows, multi-step forms, or any other interactive elements that might span multiple thread switches.