# Attachments URL: /docs/guides/attachments Let users attach files, images, and documents to messages. *** title: Attachments description: Let users attach files, images, and documents to messages. ----------------------------------------------------------------------- import { AttachmentSample } from "@/components/docs/samples/attachment-sample"; import { InstallCommand } from "@/components/docs/fumadocs/install/install-command"; Enable users to attach files to their messages, enhancing conversations with images, documents, and other content. ## Overview The attachment system in assistant-ui provides a flexible framework for handling file uploads in your AI chat interface. It consists of: * **Attachment Adapters**: Backend logic for processing attachment files * **UI Components**: Pre-built components for attachment display and interaction * **Runtime Integration**: Seamless integration with all assistant-ui runtimes ## Getting Started ### Install UI Components First, add the attachment UI components to your project: This adds `/components/assistant-ui/attachment.tsx` to your project. **Next steps:** Feel free to adjust these auto-generated components (styling, layout, behavior) to match your application's design system. ### Set up Runtime (No Configuration Required) For `useChatRuntime`, attachments work automatically without additional configuration: ```tsx title="/app/MyRuntimeProvider.tsx" import { useChatRuntime } from "@assistant-ui/react-ai-sdk"; const runtime = useChatRuntime({ api: "/api/chat", }); ``` **Note:** The AI SDK runtime handles attachments automatically. For other runtimes like `useLocalRuntime`, you may still need to configure attachment adapters as shown in the [Creating Custom Attachment Adapters](#creating-custom-attachment-adapters) section below. ### Add UI Components Integrate attachment components into your chat interface: ```tsx title="/components/assistant-ui/thread.tsx" // In your Composer component import { ComposerAttachments, ComposerAddAttachment, } from "@/components/assistant-ui/attachment"; const Composer = () => { return ( ); }; // In your UserMessage component import { UserMessageAttachments } from "@/components/assistant-ui/attachment"; const UserMessage = () => { return ( ); }; ``` ## Built-in Attachment Adapters ### SimpleImageAttachmentAdapter Handles image files and converts them to data URLs for display in the chat UI. By default, images are shown inline but not sent to the LLM - use the VisionImageAdapter example above to send images to vision-capable models. ```tsx const imageAdapter = new SimpleImageAttachmentAdapter(); // Accepts: image/* (JPEG, PNG, GIF, etc.) // Output: { type: "image", url: "data:image/..." } ``` ### SimpleTextAttachmentAdapter Processes text files and wraps content in formatted tags: ```tsx const textAdapter = new SimpleTextAttachmentAdapter(); // Accepts: text/plain, text/html, text/markdown, etc. // Output: Content wrapped in ... tags ``` ### CompositeAttachmentAdapter Combines multiple adapters to support various file types: ```tsx const compositeAdapter = new CompositeAttachmentAdapter([ new SimpleImageAttachmentAdapter(), new SimpleTextAttachmentAdapter(), // Add more adapters as needed ]); ``` ## Creating Custom Attachment Adapters Build your own adapters for specialized file handling. Below are complete examples for common use cases. ### Vision-Capable Image Adapter Send images to vision-capable LLMs like GPT-4V, Claude 3, or Gemini Pro Vision: ```tsx import { AttachmentAdapter, PendingAttachment, CompleteAttachment, } from "@assistant-ui/react"; class VisionImageAdapter implements AttachmentAdapter { accept = "image/jpeg,image/png,image/webp,image/gif"; async add({ file }: { file: File }): Promise { // Validate file size (e.g., 20MB limit for most LLMs) const maxSize = 20 * 1024 * 1024; // 20MB if (file.size > maxSize) { throw new Error("Image size exceeds 20MB limit"); } // Return pending attachment while processing return { id: crypto.randomUUID(), type: "image", name: file.name, file, status: { type: "running" }, }; } async send(attachment: PendingAttachment): Promise { // Convert image to base64 data URL const base64 = await this.fileToBase64DataURL(attachment.file); // Return in assistant-ui format with image content return { id: attachment.id, type: "image", name: attachment.name, content: [ { type: "image", image: base64, // data:image/jpeg;base64,... format }, ], status: { type: "complete" }, }; } async remove(attachment: PendingAttachment): Promise { // Cleanup if needed (e.g., revoke object URLs if you created any) } private async fileToBase64DataURL(file: File): Promise { return new Promise((resolve, reject) => { const reader = new FileReader(); reader.onload = () => { // FileReader result is already a data URL resolve(reader.result as string); }; reader.onerror = reject; reader.readAsDataURL(file); }); } } ``` ### PDF Document Adapter Handle PDF files by extracting text or converting to base64 for processing: ```tsx import { AttachmentAdapter, PendingAttachment, CompleteAttachment, } from "@assistant-ui/react"; class PDFAttachmentAdapter implements AttachmentAdapter { accept = "application/pdf"; async add({ file }: { file: File }): Promise { // Validate file size const maxSize = 10 * 1024 * 1024; // 10MB limit if (file.size > maxSize) { throw new Error("PDF size exceeds 10MB limit"); } return { id: crypto.randomUUID(), type: "document", name: file.name, file, status: { type: "running" }, }; } async send(attachment: PendingAttachment): Promise { // Option 1: Extract text from PDF (requires pdf parsing library) // const text = await this.extractTextFromPDF(attachment.file); // Option 2: Convert to base64 for API processing const base64Data = await this.fileToBase64(attachment.file); return { id: attachment.id, type: "document", name: attachment.name, content: [ { type: "text", text: `[PDF Document: ${attachment.name}]\nBase64 data: ${base64Data.substring(0, 50)}...`, }, ], status: { type: "complete" }, }; } async remove(attachment: PendingAttachment): Promise { // Cleanup if needed } private async fileToBase64(file: File): Promise { const arrayBuffer = await file.arrayBuffer(); const bytes = new Uint8Array(arrayBuffer); let binary = ""; bytes.forEach((byte) => { binary += String.fromCharCode(byte); }); return btoa(binary); } // Optional: Extract text from PDF using a library like pdf.js private async extractTextFromPDF(file: File): Promise { // Implementation would use pdf.js or similar // This is a placeholder return "Extracted PDF text content"; } } ``` ## Using Custom Adapters ### With LocalRuntime When using `LocalRuntime`, you need to handle images in your `ChatModelAdapter` (the adapter that connects to your AI backend): ```tsx import { useLocalRuntime, ChatModelAdapter } from "@assistant-ui/react"; // This adapter connects LocalRuntime to your AI backend const MyModelAdapter: ChatModelAdapter = { async run({ messages, abortSignal }) { // Convert messages to format expected by your vision-capable API const formattedMessages = messages.map((msg) => { if ( msg.role === "user" && msg.content.some((part) => part.type === "image") ) { // Format for GPT-4V or similar vision models return { role: "user", content: msg.content.map((part) => { if (part.type === "text") { return { type: "text", text: part.text }; } if (part.type === "image") { return { type: "image_url", image_url: { url: part.image }, }; } return part; }), }; } // Regular text messages return { role: msg.role, content: msg.content .filter((c) => c.type === "text") .map((c) => c.text) .join("\n"), }; }); // Send to your vision-capable API const response = await fetch("/api/vision-chat", { method: "POST", headers: { "Content-Type": "application/json" }, body: JSON.stringify({ messages: formattedMessages }), signal: abortSignal, }); const data = await response.json(); return { content: [{ type: "text", text: data.message }], }; }, }; // Create runtime with vision image adapter const runtime = useLocalRuntime(MyModelAdapter, { adapters: { attachments: new VisionImageAdapter(), }, }); ``` ## Advanced Features ### Progress Updates Provide real-time upload progress using async generators: ```tsx class UploadAttachmentAdapter implements AttachmentAdapter { accept = "*/*"; async *add({ file }: { file: File }) { const id = generateId(); // Initial pending state yield { id, type: "file", name: file.name, file, status: { type: "running", progress: 0 }, } as PendingAttachment; // Simulate upload progress for (let progress = 10; progress <= 90; progress += 10) { await new Promise((resolve) => setTimeout(resolve, 100)); yield { id, type: "file", name: file.name, file, status: { type: "running", progress }, } as PendingAttachment; } // Return final pending state return { id, type: "file", name: file.name, file, status: { type: "running", progress: 100 }, } as PendingAttachment; } async send(attachment: PendingAttachment): Promise { // Upload the file and return complete attachment const url = await this.uploadFile(attachment.file); return { id: attachment.id, type: attachment.type, name: attachment.name, content: [ { type: "file", data: url, // or base64 data mimeType: attachment.file.type, }, ], status: { type: "complete" }, }; } async remove(attachment: PendingAttachment): Promise { // Cleanup logic } private async uploadFile(file: File): Promise { // Your upload logic here return "https://example.com/file-url"; } } ``` ### Validation and Error Handling Implement robust validation in your adapters: ```tsx class ValidatedImageAdapter implements AttachmentAdapter { accept = "image/*"; maxSizeBytes = 5 * 1024 * 1024; // 5MB async add({ file }: { file: File }): Promise { // Validate file size if (file.size > this.maxSizeBytes) { return { id: generateId(), type: "image", name: file.name, file, status: { type: "incomplete", reason: "error", error: new Error("File size exceeds 5MB limit"), }, }; } // Validate image dimensions try { const dimensions = await this.getImageDimensions(file); if (dimensions.width > 4096 || dimensions.height > 4096) { throw new Error("Image dimensions exceed 4096x4096"); } } catch (error) { return { id: generateId(), type: "image", name: file.name, file, status: { type: "incomplete", reason: "error", error, }, }; } // Return valid attachment return { id: generateId(), type: "image", name: file.name, file, status: { type: "running" }, }; } private async getImageDimensions(file: File) { // Implementation to check image dimensions } } ``` ### Multiple File Selection Enable multi-file selection with custom limits: ```tsx const api = useAssistantApi(); const handleMultipleFiles = async (files: FileList) => { const maxFiles = 5; const filesToAdd = Array.from(files).slice(0, maxFiles); for (const file of filesToAdd) { await api.composer().addAttachment({ file }); } }; ``` ## Backend Integration ### With Vercel AI SDK Attachments are sent to the backend as file content parts. ## Runtime Support Attachments work with all assistant-ui runtimes: * **AI SDK Runtime**: `useChatRuntime`, `useAssistantRuntime` * **External Store**: `useExternalStoreRuntime` * **LangGraph**: `useLangGraphRuntime` * **Custom Runtimes**: Any runtime implementing the attachment interface The attachment system is designed to be extensible. You can create adapters for any file type, integrate with cloud storage services, or implement custom processing logic to fit your specific needs. ## Best Practices 1. **File Size Limits**: Always validate file sizes to prevent memory issues 2. **Type Validation**: Verify file types match your `accept` pattern 3. **Error Handling**: Provide clear error messages for failed uploads 4. **Progress Feedback**: Show upload progress for better UX 5. **Security**: Validate and sanitize file content before processing 6. **Accessibility**: Ensure attachment UI is keyboard navigable ## Resources * [Attachment UI Components](/docs/ui/attachment) - UI implementation details * [API Reference](/docs/api-reference) - Detailed type definitions